
Second Order Problems

Hyperbolic Case
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Hyperbolic Problems

- Wave equation
- d’Alembert formula
- solution in 3d
- solution in 2d
- initial-boundary-value problem
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Wave equation

We consider the equation

utt(x , t) = ∆u(x , t) t ∈ R , x ∈ Rn ,

where the Laplace operator sums up the second order pure x-derivatives.

Remark

In hyperbolic and parabolic problems, one of the variables is distinguished,
we speak about the time variable, the remaining variables are called space
variables.
Speaking about a one-dimensional problem, we usually have in mind a
problem with one space variable, while in fact, it is a problem on R2.

We complete the wave equation by initial conditions on u(·, t0) and
ut(·, t0), which are initial displacement and speed, respectively.
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One-dimensional case

With x ∈ R, the wave equation becomes

utt(x , t) = c2uxx(x , t) ,

with the wave speed c .
In new variables ζ = x − cζ, η = x + cζ, this becomes

wζη(ζ, η) = 0 ,

From this, it follows that the solution has the form

u(x , t) = F (ζ) + G (η) = F (x − ct) + G (x + ct) ,
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Initial conditions

Let’s assume t0 = 0 and u(x , 0) = u0(x), ut(x , 0) = v0(x).
It follows

F (x) + G (x) = u0(x) , −cF ′(x) + cG ′(x) = v0(x) .

Taking the derivative, we obtain a system for F ′ and G ′,

F ′ + G ′ = u′0 ,

−cF ′ + cG ′ = v0

with the solution

G ′ =
cu′0 + v0

2c
, F ′ = −cu′0 − v0

2c
,

from which F and G can be obtained by integration.
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d’Alembert’s formula

Theorem

Let u0 ∈ C 2(R) and v0 ∈ C 1(R). Then the unique solution to the Cauchy
problem

utt = uxx , u(x , 0) = u0(x) , ut(x , 0) = v0(x)

is

u(x , t) =
u0(x − t) + u0(x + t)

2
+

1

2

x+t∫

x−t

v0(ξ) dξ .

Remark

In mathematics, a transformation to dimensionless quantities is preferred
in order to eliminate constants like c in this case.
As an exercise, one can derive the formula in the general case as well.
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Some solutions

Example

We solve the wave equation utt = uxx on R with triangular initial conditions for
the displacement (u0(x) = max(0, a|x − 0.5|)) and/or a cosine
(v0(x) = b cos(2x))/rectangular pulse (v0(x) = χ[−2.5,2.5](x)) for the velocity.

Fig. 13: d’Alembert’s solution
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Reformulation

The scalar wave equation can be reformulated as a system of two first
order PDEs. To this end, we introduce the quantities v = ut and ϵ = ux .
Their physical meanings are velocity and deformation, respectively.
They are governed by the equations

ϵt = vx

vt = ϵx .

The second of the two equations is the original equation in the new
variables, while the first one ensures geometrical compatibility.
It expresses the Schwarz equality of second order mixed derivatives of the
displacement function u(x , t).
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Hyperbolic systems

Remark

In general, a vector equation of the form

ut(x , t) + A(x , t)ux(x , t) = G (x , t, u)

with a matrix A, that has a full system of eigenvectors, with all
eigenvalues real, is called a hyperbolic system of PDEs.
If all eigenvalues are different, one speaks of strong hyperbolicity.

Remark

Hyperbolic balance laws of the form

ut + div F (x , t, u) = G (x , t, u)

are of special interest in continuum physics.
Note that the flux tensor F does not depend on derivatives, it is a function
of the state variables comprised in the vector u alone.
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Solution

For the wave equation, the matrix A becomes

(
0 −1

−1 0

)

with the eigenvalues −1 and +1.
Transformation of the state vector u = (u1, u2)

T to the eigenbasis gives

∂t(u1 + u2) + ∂x(u1 + u2) = 0 , ∂t(u1 − u2)− ∂x(u1 − u2) = 0 .

The problem splits into two independent first order Cauchy problems for
the functions z1 = u1 + u2 and z2 = u1 − u2.
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Superposition

We consider once more the triangular initial displacement as in the
previous example.

Fig. 14: Two waves corresponding to two components of vector z = (z1, z2)
T
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Source terms

If we add an inhomogeneity on the right-hand side of the wave equation, in
the case of vanishing initial conditions for u and ut , the solution becomes

u(x , t) =
1

2

t∫

0

x+t−τ∫

x−t+τ

f (ξ, τ) dξ dτ .

In the special case f (x , t) = f (t), the solution u is also independent of x ,
and it is a second anti-derivative of f .
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The 3d case

Theorem (Kirchhoff)

The unique solution to the problem

utt(x , t) = ∆u(x , t) ,

u(x , 0) = 0 ,

ut(x , 0) = p(x) ,

has the form

u(x , t) =
1

4πt

∫

St(x)
p(y) dy ,

where the integral is calculated with respect to the surface measure on the
sphere.

Remark

The right-hand side of the Kirchhoff formula is the integral mean value of
all initial values in the distance t (times wave speed in general) from the
considered point x.
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Sketch of proof

Proof: We calculate the right-hand side of the formula in spherical
coordinates φ, ϑ, representing y = x + tn⃗, where n⃗ is the unit outer vector
of the sphere St(x)

n⃗ = (sin(ϑ) cos(φ), sin(ϑ) sin(φ), cos(ϑ))T .

At t = 0 we confirm the initial conditions, and for t > 0 we derive

u(x , t) =
t

4π

π∫

0

2π∫

0

p(x + tn⃗(ϑ, φ)) sin(ϑ) dφ dϑ ,

ut(x , t) =
1

t
u +

1

4πt

∫

St(x)

∇p(y)n⃗(y) dy =
1

t
u +

1

4πt

∫

Bt(x)

∇ · (∇p(y)) dy ,

utt(x , t) =
1

4πt

d

dt

t∫

0

∫

St(x)

∇ · (∇p(y)) dy = ∆u(x , t) .
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A lemma

Lemma

The solution to

utt(x , t) = ∆u(x , t) ,

u(x , 0) = p(x) ,

ut(x , 0) = 0 ,is given by

u(x , t) =
∂

∂t

(
1

4πt

∫

St(x)
p(y) dy

)
.

Remark

Swapping the conditions for u and ut results in a time derivative,
otherwise there is no difference to Kirchhoff’s formula.

Proof: If u(·, ·) satisfies the wave equations, v(·, ·) = ut(·, ·) fulfills it as
well, furthermore, it meets initial conditions for its values, while
vt(x , 0) = utt(x , 0) = 0.
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Combination

Now, due to linearity, the two right-hand side terms may be added to find
a solution to

utt(x , t) = ∆u(x , t) ,

u(x , 0) = u0(x) ,

ut(x , 0) = v0(x) ,

which leads to

u(x , t) =
1

4πt

∫

St(x)
v0(y) dy +

∂

∂t

(
1

4πt

∫

St(x)
u0(y) dy

)
.

Theorem

Assuming u0 ∈ C3(R3) and v0 ∈ C2(R3), the above formula gives the
solution to the Cauchy problem for the 3d wave equation.

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2022 107 / 238

Descent

In two dimensions, the solution is obtained from the 3d case, where one
assumes that u(x1, x2, x3, t) does not depend on x3.
Of course, this requires that also the initial data must not contain any x3.

Hence, the solution becomes

u(x , t) =
1

2π

∫

Bt(x)

v0(y)√
t2 − |y − x |2

dy+
∂

∂t

(
1

2π

∫

Bt(x)

u0(y)√
t2 − |y − x |2

dy

)
.

Notice that this time, integration is over the whole disc in R2, not just the
circumference.

Remark

In the 3d case, an initial signal arrives at (x , t) exactly if its source (y , 0) is
in a spatial distance equal to t (in general, multiplied by the wave speed c
for utt = c2uxx).
In 2d, also signals from a shorter distance may arrive – they originate from
non-zero x3-layers of 3d space.
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Fourier series approach

Now, we construct solutions to the wave equation

utt(x , t) = uxx(x , t)

in the 1d case with Ω = (0, 1).
Further, we assume vanishing Dirichlet boundary conditions at the ends of
the interval, x = 0 and x = 1, i.e.,
u(0, t) = ut(0, t) = u(1, t) = ut(1, t) = 0 for all t.
Initial condition for position u and speed v = ut are

u(x , 0) = u0(x) , ut(x , 0) = v0(x) for x ∈ (0, 1)

with continuous functions u0 and v0.

It turns out that one can find solutions in the form of products
u(x , t) = w(x)z(t).

Remark

Due to the linearity of the PDE, solutions may be superposed.
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Eigenforms

The PDE applied to a product yields conditions on each factor

w ′′(x) + λw(x) = 0 , where w(0) = w(1) = 0

and

z̈(t) + λz(t) = 0

with the common factor λ ∈ R.
The problem for w has an infinite spectrum of eigensolutions in the form

wk(x) = sin(kπx) , k ∈ N .

From this, we obtain λk = k2π2 and hence

zk(t) = ak sin(kπt) + bk cos(kπt) .
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Series

Using linearity, we compose the solution by combining modes

u(x , t) =
∞∑

k=1

sin(kπx) (ak cos(kπt) + bk sin(kπt))

with free coefficients ak and bk .
Taking the time derivative at t = 0, comparison with the initial conditions,
ak and bk are to be defined by Fourier series expansions

u0(x) = u(x , 0) =
∞∑

k=1

ak sin(kπx) ,

v0(x) = ut(x , 0) =
∞∑

k=1

kπbk sin(kπx) .
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Solution

Theorem

Let u0 and v0 be continuous functions with piecewise continuous
derivatives and zero boundary values.
With

ak = 2

1∫

0

u0(x) sin(kπx) dx ,

bk =
2

kπ

1∫

0

v0(x) sin(kπx) dx ,

the solution of the initial-boundary value problem to the wave equation is
given by the series

u(x , t) =
∞∑

k=1

sin(kπx) (ak cos(kπt) + bk sin(kπt)) .
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Example

Example

We solve the wave equation utt = uxx on (0, 1) with zero boundary
conditions.
Let u0 = |x − 0.5| and v0 = 4x(1− x).

Fig. 15: Fourier solution – contributions of u0 and v0
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Solution to the example problem

Fig. 16: Displacements and velocities u and v = ut
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Numerical approach to the wave equation

We consider the one-dimensional partial differential equation

utt(x , t) = c2uxx(x , t) , x ∈ (xl , xr ) , t ∈ [0,T ] ,

assuming at t = 0

u(x , 0) = u0(x) , x ∈ [xl , xr ] ,

ut(x , 0) = v0(x) , x ∈ [xl , xr ] .

and at the ends of the interval Dirichlet conditions

u(xl , t) = ul(t) , u(xr , t) = ur (t), t ∈ [0,T ] .

Possible generalizations are material inhomogeneity, damping and forcing,
i.e. lower order terms, variable coefficients and a non-zero right-hand side.
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Fourier method

As for analytical solutions, we can apply the decomposition method also in
the case of a discrete, numerical approach.
We construct numerical solutions on an equidistant grid in the space
domain, xj = x0 + j · h.
We represent the right-hand side of the PDE, e.g. uxx , by a matrix
multiplication of the nodal values, here

c2uxx(xj) ≈ AU

with U = [u(xj), j = 1, 2, . . . , n]T .
Next, we perform an eigen-analysis of the matrix A, writing it as

A = QΛQ−1

where the columns of Q are the eigenvectors, the corresponding
eigenvalues λ are the entries of the diagonal matrix Λ.
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Initial conditions

The initial conditions u0 and v0 are represented by their grid values U0,
resp. V0, and both vectors are decomposed in the eigenbasis definded by
Q.
The solution can be found in the form:

U(t) =
n∑

k=1

(ak cos(λkt) + bk sin(λkt))Q(:, k) ,

where the ak and λkbk are the coefficients of U0, V0 in the basis Q,

Qa = U0 , QΛb = V0 .

Remark

The approach works as long as the right-hand-side is linear in u and the
matrix A has a full set of real eigenvectors.
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Inhomogeneous material

Example

We solve a wave equation utt = c2uxx on [−π,+π] with a variable coefficient
c2 = 2 + cos(7x) and a concentrated initial condition for the displacement
u0(x) = exp(−9(1 + x)2) with zero initial speed and zero boundary conditions.

Fig. 17: Numerical solution
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Lax-Friedrich

In the hyperbolic case, we can also represent the second order PDE by a
system of two first order PDEs.
Next, we apply the well-known schemes, like Lax-Friedrich or
Lax-Wendroff, to both components of the vector quantity. Finally, we
compose the original function back from the new variables.

Remark (upwind)

In the case of the wave equation, we observe two waves, one of them
running forward, one backward.
If we want to apply an upwind discretization, we first need to decouple the
system, bringing it to a diagonal form. Then, to the component with
positive speed, we apply backward differentiation, to the other one (with
negative speed), we use forward differentiation.
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Stability

Remark

As in the case of scalar balance laws, explicit difference schemes require a
limit in the time-step to be stable, and hence to converge.
Again, the CFL condition is to be satisfied for all wave speeds of the
hyperbolic problem. No wave may travel farther than of space step during
one time step.
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Decomposition

Example

We solve a hyperbolic system, which is equivalent to a wave equation equation,
ut = 2vx , vt = 8ux , with a triangular initial condition for both the displacement
and the speed, u0(x) = v0(x) = max(0, 1− |1 + x |)

Fig. 18: LF solution
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Other methods

In the context of parabolic problems, we will encounter the method of lines
(MoL), which may be also applied to hyperbolic problems.
Since this approach can easily use implicit ODE-solvers, it is also suitable
to avoid stability problems.
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