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1, Introduction . ' . ’

In growth curve aﬁilioio often a growing trait is observed st
time points ti (i=1,,...n) (age of the gro‘ing organiem) end
modelled by » random variable y, = y(t,) (random variables are
underlined), We assume this situation in the prooont paper un-
der the additional assumption that . -

Y * f(ti,d')-roi. 1w1,...,n, Jell, dim ((2)- P - {1)

t, € [xy.%x,], x1<x , Nap,
/

The function f in (1) is called the growth function. its gr-ph
a growth curve. The parameter vector V" = (t’i...... d’ ) e

unkno-n and the 8, ore i.1.d, error terms uith oxpoetation
E(oi) =0 and tho unknown variance V(e,) = 62.

Furthermore the function f may be non-linesr in at lesst one
component of ¢ and twice differentiable with rupoct to o, The
aim of this paper is to define some criteria for the optimsum

‘choice of the t, end to present methods for the construction of -

optimua designs as well as some optimum designs for special
functions and perameter configurstions,
The most important problems in growth curve analysis are

- the appropriste choice of a growth function f(model choice)
- the estimation of ¢ for a fixed function f from the oboor-
vatione y(ti)

- the constructions of confid.neo 1ntorv.1. for tho conponont.
3 of F(Jui,....p) end testing hypotheses on the ff .

We assume in this pesper that the function f is givea 1u adv.aco
and the n-tupel (ts,....tp) =7 leads to & uaiquo solutien

3 3(710..- .yn) of -53
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n ‘ .
Eheot] - ool o
The rondbu variable 2 » "(11""'!:1)_ defined by (2) is the

least squares estimstor of ¢,

'Tho problo- of testing s hypothesis wease ducuuod by Rnch and
Schimke /10/, /11/. | |

Under mild regularity conditions it was shown by Jennrich /9/
that |

V(@ - ) (3)
is ssymptoticelly u(op.z ) distributed where 3~ is the limes
(for n— ) bf. n._vA(a i J'o.'l')

with ~ _ ‘ -1
VA(QIJ.T) im 62[F.(¢QT)F("!T)] . ' - (")
F(OT) s (F,4(0T)), o (5)
and ' ' |

1-1..:..n) (6)

's —-a——
fij('r'T) . a‘r f(ti"’)' j-_l.,...nP *

3
We call VA(@ | 0, T) the asymptotic covarisnce matrix of the °

.estimator 3 and look for en n-tupel T which minimizes in some
sense thie matrix for given n, ‘
We note that the function TV L | T) 1s fully symmetric snd

therefore we restrict our considerstions without loss of genere~
11ty to the simplex

)

8= {Te[xl.xu]n |t1 i...‘ t } of "ordorod n-tuplu T.

As we will see later for opt:l.nuu designs vory often the nuubor'
of different co-pononto ti (1=1,....n) does not exceed the num-
ber p of parameters. Therefore we represent the elements of S
by tables D conteining in the first row the ordered set

{xl.xz..'...x.} of the m different fi-volun and in the second
row the numbers of their occurence. This lesds to the following
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It is & matter of course that the reletion - -

Definition 1: A mapping D acoigniﬁh a positive 1ntog.é n, to
each time point x, (i=1,..,.m) from ite domein Dom(D) c,[xl.xu]

is called an exact experimentel design, We call the domein.
Doa(D) tho support and the nunbor |
]

neSon

" the size of the design D, .If the cardinality of the aupbori

Oom (D) equals m then we will rate to O as & m-point dasign.
The. set of all designs of a given size n is denoted by O(n) and
a subscript n indicates that s design D, belongs to D(n),

Dn . (31-... ,x.) - m(‘tl,...,tn) 1ff
nlaooo nn. : ‘

|{:L|_til = x}|=n. 1a Lieee.m,

~defines @ ono-to—onofcorr;tpondinco ID between the simplex 8 .

and O(n). Frequently we will not dictihgutsh'bjtnton T end
mT). .

2,

Locsl timality of oxact\ox oriuoﬁial'd sd nol

In the cese that f is linearly dependent on ¢ optimum designs
are defined as docigno ainisizing some functionll of the cova-
risnce matrix of .the least squares estimator d' Those functid-
nals and hence the optimum designs are 1ndopondont of ¢, |
In the non-linear case we deal with in this psper the coverisn-
ce matrix is unknown, We therefore base our optimality criterie

~ on the ssymptotic coveriance matrix introduced in formuls (4)
~using the ssme functionals as fsmiliar in the linear case. This

leads to the unsatisfectory situation that the functionals de-
pend on the parsmeter " to be estimated. Thus in practice we
need some a priori informstion about ¢ for inetance s 'tolerance
interval where the optimum design is to bo found tor the loa.t

- favourable case.



Dofinition ¥ Lot be given a mapping
s D(n)-—-bR+
of tho form

2(0,) = 3(vA(3h? w-*(0,)) | (8

with a certain ¥: RP'P-—QR*; Then o: is called a locally
Z-optimum exact experimentsl design of size n at = ¢ 6Q 1f
inf z(p.) = z(dhH. | - (9)
0,60(n) " n , |

In the following we deal with the functions ¥ ond Z_,
r=21,2,,00.p.p*1,p+2, defined by (8) end

| _J if rép,
F,(M) = < IM| 1f r=ps+l,
tr{M) if rep+2,

with M = '('13)1 J=1,....p°

The corresponding designe D* are called locally cf,. ~optimum

'

designs for r‘p. locelly D-optimum for r=p+1 and locally
A~optimum designs for ra=ps+2,

Chernoff /2/'nas'3he first who dealt with the problea of fin-
ding D-optimum exact designs in the case of a nonlinesr func-
tion f and who nontipnod the necessity of local optimality,

First analytical results fdr the criterion of local D-optimas-
lity were found by Box and Lucas /1/ for the special case p =n,

In this case we have \F’Fl-lFlz. So the ;ocally D~optimum

dosign_D; is equivalently to (9) defined by

sup  |F(£,.0.)|2 «|F( .o*)[z . ' (10)
o' p o'"p

Amongst other results Box and Lucas /1/ found for the support
(”1'“2'x3) of the locel D-optisum design for the function

It _
f(t, ) = AR A 3 . (11)

with V= J,,
96




oy Xy °xp(d;3x1)'xu gxp(d; xu)

>
T 3, xy =%y xgm X, (12)
2 ;;; ' exp(dzsxl) - exp(dzsxu)

a solution depending only on d'. So D; is given by

D;- (xl X2 xu) : (13)
i 1 1 |

with x2 defined by (12),

A review of other results is given by Rasch a.o. /12/, most of

them are special solutions for the criterion of local D-optima-

lity and discussions of search algorithms,

In this paper we present some new rosults - analytical as woll

as numerical solution by search algorithme - which have been

found by the authors, A more detailed version of the analytical

results will be published in Frischmuth /7/, the search algo-

rithm OPREG is described in Rasch a.o, /12/ snd the search al-

gorithm LIESA will be published by Duchreu and Friachpu}h /8/.

3, Numerical seérch

3.1. The algorithm OPREG

Even for linear functions f exact D-optimum designs are construo-
ted by search élgorithps (see Cook and Nachtsheia /3/), By |
Schimke (see Rasch a,o0, /12/) the following eystematic search
was progremmed (OPREG), In the first step of this algoritha
l=p+6 equidistant points were chosen in [x;.x,] and 8 l-tupel

(ng' ngaool o“;’
1 | -
with ; hg = n (nap fixed), O € .ng«(n which sinimizes Z_. for

this support is determined. This design is the starting point
of an iteration. Let (X4.,....Xy) be the‘'support of the s-th
step (1. =1) of the iteration, T en a new support 13 dofined for

the (s+1)~th step by all diffarent v-values




= X

= X

qh 4 xq. The ordered set of different

v-values 1s the l1,,1-tupel (xl.,...x1

(qui,....ls) Rith»xl € v

s+i?. For this 13+i-tupal

in the (s+1)~th step ?he 1,,1-tupel

.(n:*i.....nlgzi)'is found which minimizes Z_ under the
1s+1
constraint E n, = n. For Ax, we used
Ums ’ ‘ !
i .
X = X
"y 1
AXg = v -
If this algorithm leads to vanishing ng*l-values the corres-

[

ponding columns are droppéed. OPREG is very successful in fin-
ding the absolute minimum of Z_  in [x;,x,] at f'= & but it

' costs an enormous -computing time for n > 20, Therefore Duchrau
/4/. /5/ developed the algorithm LIESA described in the follo-

niﬁg.

3.2, The algorithm LIESA

In order to speed up the search procedure we are going now to
introduce the assumption that the functional Er t= z’rom is

smooth on S. Note that all of the above mentioned functionals
¥ (re1,....p+2) yield smooth functions on S. Now, our basic

algorithm consists of the-following steps

- choice of an initial point T°,

- choice of & suitable direction A of d_escent for Z,
- (4f possible), | !

- choice of . a stepsize A,
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The main problem is that Z_ takes its minimum on the boundery

9s. The direction A is calculated from grad ir using & quasi-

Newton-formula (cf, Schwetlick, /13/) and projections on the

tangent space to the actual part of the boundary, The stepsize
| ,
X eR* 1s chosen such that

b
~

Z (1% 20) :um{i’r(r" carn) 2 (T¥ea) 2 (75 03} A)}- (14)

where o £(0,1) and «* = inf {a-rdITk-réAe[xl.xu]n}.

We start with A= 1 and nuitiply-or divide by & or a*, respec-
tively, until (14) becomes true. If a number A satisfying (14)

is found, then TK*1

- T+ 2a, . | « (18)

! - \
kel may not belong to S, but it always belongs to

"is defined by

Tk+1

Of course, T

[xl.xu]". Thus by reordering one gets an element of S with the

same values of Er‘ In order to avoid redundant calculations and

to save storage it is useful to store ID(T) instead Jf T and to
represent A analogously. Hence there is no problem with reorde-
ring, In a first version of our program (Duchrau /4/) the ini-
tisl guess was left to the user or made randomly. Unfortunately, .
the }esulya indicated a strong dependence of the celculated op-
timum design on the initial guees. Even repeated calculations
with random starting points showed a high error rate, taking
the results of Rasch a,o. /12/ found by OPREG for n = 3,,..,13
as a criterion, But the type of errors was very suggestive:
writing the results as tables the first row was almost correct
in all considered cases., Hence it is quite natursl to try some
modifications of the second row having the descent finished, To
this end the following procedure was introduced (Duchrau /S/).

x OO.X
Let O = ( 1 ') . z n, = n, We define a set Ue(on)
NyeeeNg

by
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Ug(Dp) = 1°"x) S=A =n f 20, In-Rléol.
el h

1. " e m
Here agein columns with a zero in the secound row are dropped.

We considered the norms ||n - fi]| = max lnIJEiI with e =1 and
0<1lém .

m , .
In-A ] = ? Inl-ﬁl ln_m:l.th e=2, In both caeses the cardinality
of Uy is small, so that the problem

Z(D¥) = Um%g ) Z(0,) | | (16)

is easy to solve, If D) = D, is the unique solution of (16)
~then we stop, otherwise we reatart the descent algorithn with
DY as & new initial guess,

0f course, there is no guaranty, that this algorithm finds the
absolute minimum of Z_ on D(n). On the other hand, tests with
the Zf-criterion for simple exponential regression in all known
cases gave the correct results - independently. of the choice of
T%, Even for larger sizes n we obtained results in considerably
small times,

n ny n, Ny X4 x2' Xg time o

O

3 1 1 1 0 12,35 65 20" 3
10 1 2 7 0 16,80 65 1 10
64 5 15 44 0 17,38 65 -2 10
7 24 69 0 18,42 . 65 3 10

100

Table 1 Results for locally Z, optimum designs |
(Exponential regression, {xy.x,) = <0.65).J;3- - 0,05)

N

The computation time per step is .increasing proportionally to
mzn. For the optimal design the number m usually equals the
number of parameters, If no exception of thie.experiencé is
.expected, a starting point with a low number of different com-
ponents is to be preferred,

100 i




.

4, Some analytical coniiderations

The main objective of this section is to illustrate the diffi-
culties of the numerical search mentioned above by the example
of D~optimality, Further we point out a less expensive way to
calculate optimum designs for this criterion and some functions
f. To this end we generalize the result (11), (12), (13) of Box
and Lucas to the case np = m, Then we have for the determinant
of the inverse of VA(;"I(?'O.D") cf. Frischmuth /7/

A , 3 » '
vt @0, | = IFF - :ﬂ; ny1MI2

with M being a regular px p matrix obtained from F by drbpping
repeated rows. Consequently the problem splits into two inde-

"
pendent ones, the maximization of the product '] n, under the
] | 1wl -

]

constraint ny=n and the maximization of ]Mlz. The first
;;; ‘

part is quite easy - the product.tekes its maximum 1ff

;’:‘"1'“k|‘11- The maximization of IMI2 was managed by Box and

Lucas /1/ since in the case n = p the matrix M equals F, So we
can formulate . .

Theorem 1: All locally Z, optimum designe with n observations
at m = 3 different time points from I = (t;,t ) for the func-

tion
vt

f(t, )=o) + 0, 03
have the forn
X4 X2 X3
['31] + 4y [§'] + c‘2 [g'] + 63

with Xy 1 %0 Xy from (12)and n - 3['3"-] of the Jl being equal to 1,

(17)

the remainder vanishing,
Consequently, for n = 3k the solution is unique, otherwise
there are 3 designs with the same value of the criterion,

| 101
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In Frisdﬁnuth /7/!it was shown, that all points'fron S related
to designs of the form. -

Xy Xs Xg ’ with Xq0 Xoo Xy from (12)‘

Ry Mg n3 and ‘ny + n, + Ny =N |
are critical points for 24. The oigenvalues of the correspon-
ding matrix of second order derivatives of Z were calculatod

and their signs discussed, - )

From those results we infer for the oxponential growth function'

J t
f(t,”) = da + Jh e and the critorion'z4-the following

Theoren 2: Starting from an arbitrary initial design 0, with

L

0 o o |
o e ("1 X, x3) / | |
n o 0 o | -

the algorithm from the previous 'section reaches o 4eaign of the
form (17) in not more than max {1._n§-n§ 1, k.1.2.3} atops.

The time points take their terminal values already in the first
step,. ' |

Now the question arises, what generslizetions of the above the-
orems are possible._ n Frischmuth /7/ the class of growth func-
tions of the form

Fley =y + ey ) | (18)

was discussed. Under some regularity conditions for § it can be
proven that Theorem 1 holdes for f from this class with the only
modification that x, has to be calculated from a single equa-
tion €(x,) = 0. In genera} there is no explicit solution of
this equation, but € turns out to be nonotonous. ‘hence nuneri-
cally there is no problem, g |

Theorem 2 can be generalized as well. Of course, for those si-
tuhtionq in which we are able to prove a theorem of this type,
we will solve the equation E(xz) = O and use Theorem 1 rather
then the search algorithm. Generalizations to other classes of

growth functions are more cunbersome. In order to use a theorem
.analogous to Theorem 1 the solution of a p-dimensional optimi-
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zation problem is required. To this end one should put n= m= p
and use the previous search algorithm,

S, Final coalonts and possible diroctions L | -

The nnalytical results for D-optimality allou to omit numerical
search in & high dimensional space and suggest a good behaviour
of our slgorithm, On the other hand it should be mentioned that
in general the assumption m =p does not lesd to the sbsolute
ainimum of Zp+1. However, the absolute minimum cannot be “amuch
better”™ than the relstive minimum (17), the ratio being bounded
by 1:4,5 for p= 3 (cf, Frischmuth /7/), For other criteria an
analytical discussion seems to be much more complicated. For
discrete designs, axponontial growth and local 2 23 Optimality
Bock obtained formulae for relative -1n11: Frischnuth /6/ pro-
ved the uniqueness of those winima and gave a generalization to
functions of the form (18). Such results are valusble to the
¢hoice of starting pointe for numerical search, ospociaiiy for : .
large n thoyfhelp_to keep the computation time short, |

Our present interest is focussed on the application of LIESA to

other nonlinear growth functions like |

f(e.0) = fy + v arcran ['.*"ﬂ'

J‘t v,
f(t ﬂ) = [ﬁ' + U5 ] 4 , |
1,‘ - : - ' " —
f(t,i’) - ,1 ) ’ : \ : '
t
14-!"20 3
Lt 3

) = (Fy ¢ e ),

and all criteris mentioned above. We further look for more ena-

- lytical results,
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